

Welcome to pykitopen’s documentation!

Contents:

	pykitopen
	Getting Started

	Usage

	Features

	Planned

	License

	Contact

	Credits

	Installation
	Stable release

	From sources

	Usage
	Basic Usage

	Publication Views

	Request Batching

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (17.06.2020)

	0.1.1 (23.01.2021)

Indices and tables

	Index

	Module Index

	Search Page

pykitopen

[image: _images/pykitopen.svg]
 [https://pypi.python.org/pypi/pykitopen][image: Documentation Status]
 [https://pykitopen.readthedocs.io/en/latest/?badge=latest]A python wrapper for the KITOpen database!

	Free software: MIT license

	Documentation: https://pykitopen.readthedocs.io.

Getting Started

Installation

The package is best installed using pip, as it will also install all the necessary dependencies

$ pip install pykitopen

Usage

To query the KITOpen search function, simply create a KitOpen wrapper object with the desired
configuration and call the search function with the relevant parameters. The returned SearchResults
object can be iterated for all the publications.

from pykitopen import KitOpen, Publication
from pykitopen.config import DEFAULT

kitopen = KitOpen(DEFAULT)
results = kitopen.search({
 'author': 'MUSTERMANN, MAX',
 'start': '2012',
 'stop': '2016',
 'view': Publication.VIEWS.FULL
})

for publication in results:
 print(publication.data)

Features

The library is still under development, which is why this first version only provides some basic functionality.
At the moment only a publication search is supported:

	Searching by author and by year

	Customizable publication “views”, which define the fields to be included.

Planned

	Support more search parameters such as publication type, open access availability etc.

	Add support for the metrics generation feature of KITOpen.

	Add additional batching strategies

	Add export of the result to different formats such as CSV, JSON…

License

Distributed under the MIT License. See LICENSE for more information

Contact

Jonas Teufel - jonseb1998@gmail.com

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install pykitopen, run this command in your terminal:

$ pip install pykitopen

This is the preferred method to install pykitopen, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for pykitopen can be downloaded from the Github repo [https://github.com/the16thpythonist/pykitopen].

You can either clone the public repository:

$ git clone git://github.com/the16thpythonist/pykitopen

Or download the tarball [https://github.com/the16thpythonist/pykitopen/tarball/master]:

$ curl -OJL https://github.com/the16thpythonist/pykitopen/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Basic Usage

The most simple use case is to perform a simple search. To do this simply create an instance
of a KitOpen wrapper object with the desired configuration and then call the search
method on it with the proper parameters.

A simple search can be constructed by passing a string author argument and the start/end years
for the search also as strings.

The resulting SearchResult object can be iterated to get all the publication objects.

from pykitopen import KitOpen, Publication
from pykitopen.config import DEFAULT

kitopen = KitOpen(DEFAULT)
results = kitopen.search({
 'author': 'MUSTERMANN, M*',
 'start': '2012',
 'end' '2016',
 'view' Publication.VIEWS.FULL
})

for publication in results:
 print(publication.data)

Publication Views

As you might have noticed, there is an additional parameter ‘view’, which can be passed to the search parameters.
This parameter is supposed to be an object of the type PublicationView. This parameter influences, what kind of
data fields are requested for each publication in the search.

Some standard options are available as constant members of the Publication.VIEWS class. This included for example
the FULL view, which will request all of the fields and the BASIC view which will only contain the most basic
information such as ID, author, title etc. Choosing the appropriate view might help to reduce response times.

Custom Views

The user is not limited to the predefined views though, it is also possible to define custom views with only the
required fields. First of all, a list of all the available fields can be displayed like this:

from pykitopen.publication import PublicationView

print(PublicationView.FIELDS)

A custom view can be created, by simply creating a new instance of the PublicationView class. A string name and a
subset of the fields list have to be passed to the constructor. This object can then be used to be passed as a search
parameter or even set as a default in the configuration dict.

from pykitopen import KitOpen
from pykitopen.config import DEFAULT
from pykitopen.publication import PublicationView

Set it as a default
custom_view = PublicationView('MyCustomView', ['author', 'title'])

config = DEFAULT.copy()
config['default_view'] = custom_view

kitopen = KitOpen(config)

Or use it for a search request directly
kitopen.search({
 'author': 'MUSTERMANN, M*,
 'view': custom_view
})

Request Batching

The problem

So the problem is, that the used KITOpen interface at KITOpen Auswertungen [https://publikationen.bibliothek.kit.edu/auswertungen/]
does not expose a REST API. The only way to export the more detailed information data is through the download of a ZIP
file, which then in turn contains a CSV file.

So the way pykitopen works in the background is: It downloads the zip file, unpacks it into a temporary folder and
parses the csv for the actual data.

This creates a practical complication: If the amount of requested data is high, the server takes a long time to create
corresponding csv and zip files, which then leads to a timeout for the request…

Batching Strategies

To work around this problem, it is possible to get the desired data in batches, instead of everything at once. A single
request will be split into multiple different requests based on some criteria. This behaviour can be controlled with
the "batching_strategy" key the configuration dict, which is being passed to the KitOpen wrapper object. The
default behaviour being the NoBatching strategy, which will request all the data at once.

A good alternative would be the YearBatching strategy, which will request the data for every year
individually.

from pykitopen import KitOpen
from pykitopen.search import YearBatching
from pykitopen.config import DEFAULT

It is good practice to base a custom configuration on a copy of the default
config = DEFAULT.copy()
config['batching_strategy'] = YearBatching

pykitopen = KitOpen(config)

Changing the batching strategy does not change anything on the behaviour of SearchResult,
since the batching is implemented in the background. Each batch is executed, once the iterator reaches the
corresponding point.

Credits

Development Lead

	Jonas Teufel <jonseb1998@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (17.06.2020)

	Initial release

0.1.1 (23.01.2021)

	changed datetime format in HISTORY.rst

	fixed error

	Added VERSION file

Index

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/the16thpythonist/pykitopen/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pykitopen could always use more documentation, whether as part of the
official pykitopen docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/the16thpythonist/pykitopen/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pykitopen for local development.

	Fork the pykitopen repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pykitopen.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pykitopen
$ cd pykitopen/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 pykitopen tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/the16thpythonist/pykitopen/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_pykitopen

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pykitopen’s documentation!

 		
 pykitopen

 		
 Getting Started

 		
 Installation

 		
 Usage

 		
 Features

 		
 Planned

 		
 License

 		
 Contact

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Basic Usage

 		
 Publication Views

 		
 Custom Views

 		
 Request Batching

 		
 The problem

 		
 Batching Strategies

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (17.06.2020)

 		
 0.1.1 (23.01.2021)

_static/up.png

_static/up-pressed.png

